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Abstract. The first-order quantum correction for the characterization of spontaneocus radia-
tion i5 calenlated by means of electron quasi-classical trajectory-coherent states in an arbi-
trary electromagnetic field. Well known expressions for the characterization of spontaneous
radiation are obtained using quasi-classical approximation. The first-order guantum correc-
tion is derived as a functional from a classical trajectory (among which is a classical spin
vector). Transitions with spin flip and without spin flip are distinguished. Those elements
connected with photon kick and quantuin motion characteristics are selected for first-order
quantum correction. It is shown that, using an ulira-relativistic approximation, the latter
may be ignored, but when vsing a non-relativistic approximation their contributions are
approximately equal. A special trajectory-coherent representation that significantly simpli-
fies the investigation of spontaneous radiation is proposed.

Introduction

Quantum electrodynamics allows one, in principle, to obtain the general solution of
the problem describing spontaneous radiation of electromagnetic waves by charged
particles moving in external fields [1]. However, theoretical results in a simple and
visual form can be obtained comparatively rarely [2-25]. Thus the development of
effective approximate methods of theoretical -analysis for the problem of spontaneous
electromagnetic radiation is still an urgent problem. One of the most developed theories
is the theory of synchrotron radiation [2-6], for radiation in undulators [7-10], for
radiation under axial channelling [9-12] and in systems with a quadratic Hamiltonian
[13-15].

The analysis carried out in [4, 5] showed that when ultra-relativistic particles are
considered one can, as a rule, neglect the ‘quantum characier’ of the particle trajectory
and consider only the photon loss§. In particular, it was shown how the classical
formulas for the characteristics of spontaneous radiation of a pointwise charge could
be obtained, inciuding an exact classical expression for the Fourier transform of the
Lie’nard-Wiechert potentials (see, for exampie, [5, p 144]). In this case the assumption
that there exist quantum-mechanical states concentrated near the classical trajectory of
a particle is essential. However, the explicit form of such states was not represented in

§ This theoretical analysis was made more precise in [26, 27]. There the natural questions concerning the
initial conditions arise in the method accounting for the loss of the radiated photon.
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[5]. A complete and orthonormalized set of such states, which are approximate (quasi-
classical) solutions of the Klein—Gordon and Schrédinger equations, was constructed
in [28-30], and for the Dirac equation such a set was constructed in [31-34]; these
states were called frajectory-coherent (TCS).

By using these states, in [35] for a magnetic undulator and in [36] in the general
case, the procedure for obtaining exact expressions for the Fourier transforms of the
Lie’nard-Wiechert potentials (in the wavezone) from quantum theory has been per-
formed. In [33, 36} it was also shown (by using specific examples) how one can write
the first quantum correction to the radiation power (or the energy radiated) of the
spinless particle in the form of a specific functional of a classical trajectory of a particle.

Here we show that the quasi-classical trajectory-coherent states [31, 33] for the
Dirac equation in an arbitrary external field allow one to obtain the first quantum
correction to the radiation of a charged spinor particle in the form of a certain specific
functional of a classical trajectory. However, as a classical trajectory, we now consider
not only the solution of the classical Lorentz equations, but also the solution of the
classical spin equations.

1. Quasi-classical trajectory-coherent states of an electron in an arbitrary
electromagnetic field

The construction of quasi-classical trajectory-coherent states (Tcs) of an electron in an
arbitrary external field, which are asymptotic solutions of the Dirac equation with
accuracy to any power of # as #—0, was presented in detail in [31, 33]. It turns out
that for the purposes of our work, ie. for obtaining the guaranteed first quantum
corrections to the characteristics of spontaneous radiation, it is sufficient to use the
electron TCs constructed to an accuracy O(#/?). We present the explicit form of the
corresponding trajectory-coherent states of electron, following [31].

The motion of a relativistic charged particle will be.described by the Dirac equation

[—i#d,+ #]F¥ =0 (1.1
where the Hamiltonian has the form
H=caP + psmoc + e®(x, 1) ‘ (1.2)

where & = —iiV — (e/c) A(x, 1), and A, = (®, —A) is the electromagnetic potential (arbi-
trary smooth functions in xeR>, teR") and they increase together with their derivatives
as |x|—o0 not greater than a certain power of |x| uniformly in teR'. For Hermitian
Dirac matrices =X, T, po(k=1, 2, 3) we use the standard representation, and ac is
a Euclidian scalar product

3

ge={acr= Y ag;.
=1

The main symbol of the Hamiltonian operator H (1.2) has the form #(p, x, {}=
ca® + pymoc® +e®d(x, ), where P=p— (e/c)A(x, 1).

The quasi-classical positive frequency Tcs satisfying the Dirac equation (1.1) with
accuracy to O{%>*) has the form

W, (x, t, B)=H"P#) | H,, (1.3)
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where
A = :»ﬁ“’(ﬁ){m(r)[uﬁ(zl Q)]

®
2:%11 D0+ Qz+ﬁQ3+ﬁ3”2Q4]}[1“1 ity — ity — ). (14)

H(p, x, OIL(p, x, ) =1*(p, x, H11.(p, x, 1)
1 g+mgct
-, % t)=,/28(a+mocz) ( e:‘a'g(i )
1 coP (1.5)
./2£(a+moc§) ( )
A (p, x, )=eD(x, 1)+ s(p, x, 1)
(p, x, ) =(HP. P) +m§¢-"‘)1/2.

The matrices II.(f)=T1.(p(2), x(r), {) are calculatedf at the point r(xo,po)=
(x(t, x0, po), p{t, X0, Po)), where the functlons x(z Xo, Po), P(L, Xo, Po) are solutions of
the classical Hamiltonian systemi

(g, %, = —g—mpc”

=2, ¥, )=
p (p, x, 1) p(0)=po (L6)
i= ;Lp(_p’ x, t) x(O) =Xp.
The operator 4 "(%) is equal to
HOHY(- ) =No(B)[det C()]™2 EXP{% S(x, f)}(' ) (1.7)

Here
3 1/4
No(7)= (/I—[ Im bj(ﬂrﬁ)_s)
oy
is the normalization constant, the phase S(x, ¢) is a ‘complex’ action [37] of the form
I3
S(x, 1) =f [<E(9), (1)) — A ()] de+<p(2), Ax)+3{Ax, B(2)-C™'(HAx)
0

where Ax=x—x(), and 3 X 3-complex matrices

B(0)=1{w(t), wa(1), wi()] ) =z:(8), 28}, 22(1)]

are solutions of the system in variations (this is the linearization of the Hamiltonian
system (1.6) in the neighbourhood of the trajectory r.{xo, o), teR')

T The dependence of values calculated at the points of a classical trajectory on xy and py can be omitted
below

£(5) = £(x(1, Xo. po), P(1, Xo, Po)s 7}
% Here and below, the index (+) in the classical Hamiltonian function will be omitted

Alg, x, 0=1"{(p, x, 1.
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B=—21,(0B—1.{1)C 7
C= () B+ A, (C (1.8)
C(0)=1d4l B(0)= 115,641l Im &>0 (;,7=1,2,3)
The function |H,, { has the form
|Hy, {>=H, u(t, {) v={Vi, V2, V3)

> - 1.9
H=TL 0™ @1 %0123, (1.9)

where (A7, A7, A))=A" and (AI,AZ,AQ A are the ann1h1lat1on and ‘creation’
operators [38]

s VO i
K—i— \/ﬁ \/EC"- ;\/B—OB+
8
Imbj 3x3

(1.10)
Ap=—i#V - B(HC (HAx D=

and the spinor u(z, {) satisfies the fo]lowing equation

4 _

cp=3i(?) y= l—li'2
with initial conditions [39]
e, Du(0, H)=Lu(0, &) f==l1 (1.11)

which fixes the particle spin direction along the unit-vector Ie R for t=0; here =
(o1, 03, o3) are the Pauli matnces Then the operators Q, and #; can be represented
in the form?

JED=c (<o~ ﬁ><ﬁ 20 (s, g’o) P=lp-2 st
2
ﬁgz—~—(< ﬁ)<ﬁdﬂ> <,dw>)
(<a ha b’ r<h. ’”) VRS 8, 250,

Rip= § X |H, ¢>[ dz <¢, Hy | F | o j=12

|| =0 Z=z1
ﬁ3/21?,——(d3¢ <ﬂ,d3.9£>)+—(Ql 2+Q2Q:)+ 291 B, P50

T The operators O, Oa, and F: do not affect the first quantum correction to the power of spontaneous
radiation, therefore we do not present them here explicitly (see [31]).
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df st =d* o4 (t)= (<Ax, 0 > &f(y, z)L
-x(rJ

Here {¢: | @) denotes the scalar product in the Hilbert space L} [32]
{o1 @2 = _[ &’x pa(x, DOV @ pa(x, ) = (A ()T H O ). (1.12)
R3

Note that the operators Ax;, Epj, Ql, Fl, and F, are self-adjoint in L, and the
functions (1.9) form in L} a complete orthonormalized set of states

<C'5 HV’ |Hv: g>=-5v,v’6{,;’- (113)

There are no difficulties in calculating the matrix element in an arbitrary operator &3
with precision O(#" * ) with respect to the quasi-classical Tc-states. For this purpose
it is mecessary to obtain the operator in the quasi-classical TC-representation up to
O(#® *1/% [31] and average the expression obtained with respect to the wavefunction
| H,, {> (function 1.9) taking into account (1.13) and

/'AL}PHV. o= (T DY2H, Sujvak By + By
Kij. RO ﬁ;Hvl—au,az—azj.V3— &y .
W't {oult, =11, 5, 0). - ' (1.15)
Here (1, £, {") is the solution of the Bargmann-Michel-Telegdi equation for g=2 [40]

(1.14)

-=f,,x[ﬂ(:)+ I_IﬂXE(t)] (1.16)
£ 1+
with the initial condition
1+§’§” =3¢ Ix(ExD+ilixk

2 A=
where £=1(0, 0, 1), and f was defined in (1.11).

In order to use (1.13)-(1.15), we present the relations expressing the operators Ax;
‘and Apj in terms of the operators of ‘creation’ A and ‘annihilation’ A; (1.10) [41]

B-r) rfEE D e

Since the inverse matrix 7 T "= T~ T'=Ty..4, by (1.10) and (1.17) it is easy to obtain
the following matrix relations which will be used below

B*DQCE__ BDOC+ = _'2i13 x3

C*DyC'— CDyC* = B*DyB'— BDyB* =0
Relations (1.13)~(1.15), (1.17) and the explicit form of the operator Jﬁm(ﬁ) defining
the transition to the quasi-classical Tc-representation up to mod O(#Y ""/%) allow us
to calculate, in principle, the matrix elements of an arbitrary operator &,(r) with

precision O(A” * /%) ifits symbol o/ (p, x, £) is 2 smooth function in p, x and ¢, together
with all its derivatives.

70, ¢, 5= gl+

(1.18)
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2. Transition current operator in quasi-classical trajectory-coherent representation

The operator J72(#) (1.4) defines mod O(%*/?) the transition to the quasi-classical Tc-
representation

o= (H"PH) ¥+ (R
o= (XY LA P H) + O,

We calculate the current operator in this representation

f+ =g exp{ico (t—% {n, x))}

n={n, ry, n3) = (Cos @ sin 0, sin @ sin’ G, cos G).

By (1.4), we obtain

Fe= (P e exp{ico (t—% ¢n, x>)}a§’?’(ﬁ) + 07
: H 1Az HY {[ ﬁ ( 1 A+)2} {- ( 1 )}
=(1+iJAg] +ikgs —R(EDDHY 1—=— 07 | |Bexpiiwlt——{n, x>
2\2¢ ¢

2
x [1 —EG- Q;) }——\/—ﬁ Qi’ﬁexp{im (t_l@, .vc>)}“/—’—i 2}
2\2¢ 2g e 2e

+ (L_, (s, By~ a) exp{im (z ~Len x>)} E (,+ D)
I+ £ 2e
+ %—f (OF +JEOD) (1 +ﬁy_1 e, B>~ a) exp{ia) (t —% {n, x))}}
x (1+iFr, — B(ify + £2)) + O(F). @2.1)

We denote by O(%°) the operator F: Li—~L} for which IiFal!;_,LF O(#%), as fi—0, pe
L}. Since the measure (1.12) depends on a small parameter, in all subsequent calcula-
tions one can approximate the smooth functions ¢(x, #) by the partial sums of the
Taylor series in powers of Ax=0(,/%) with the given accuracy in %—0.

By using this fact, we can obtain the following expressions for the coordinate and
velocity operators in TC-representation

X =(FP0)Y A P )
=x(1) + Ax— WH(Ax#, — #] Ax) + O(F'?) (2.2)
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= - - ~ 1 - -~
X, =P cat P () =x(1 ~5 (P, AppP >)
g
-~ € 1 = -~ -~ S
+J{w.@1 _"C: dz&g“z_g (<x, '@1>App@1 +/'1W§’1<x, «@1))

—i\/ﬁmpp@;m—ﬁmpp@lwg[ (fy“«r R S s GH >)

- (H_ - <o-,ﬁxE>+a'><E+o'Xﬁy<ﬁ E>)}0(ﬁ3f2) (2.3)

By substituting these expressions into (2.1) for the transition current operator in the
TC-Tepresentation (mod O(#*2)), we obtain

j':, =l |:§'+ exp{ico (t -1 {n, X +))}+ exp{ico (tﬂ-l {n, i}))}fﬂ.:l
2| ¢ c

+i~m—ﬁ[a'xn— ] -0, nxﬁ)—axﬁw@}
2e 1+
x exp{iw (t—i- {n, x(z‘)))}+ 5(%3/ . (2.4)

3. Spectral-angle distribution of energy of spontaneous radiation

We shall find the matrix elements of the transition current 7. (2.4) and (1.18); we have
Mt v. 0, v, )
= Hy lJe|He, O

=exp{if0f—i%) <, x(1, 6, ¢, ﬁ))}{% (8, ¢ Wby

no. ]

- i& [C(Op. +Hiwpin, C(Op.>18; 4
o

+i\/%[c* (Hp- +iofln, C*(Hu->15;0

1| w? . .
b S,y = [—2— fin, o) Fiwdopn+ 1wlpx0'xxn]

g
1+ -1

Cnonx By~ nxﬁ“‘ﬂ o

io#
+—Inxn—
2e [ﬂ "

+RL (L, v, ¢, C’)5;v|,|v'|+2}+ o). (3.1)
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Here

2vi+1£1 ) ( 2v,+-1+1 )
== — 7 Gum=18unbuy 8Os
s {(\/—;njl M1 E10 05,920 v 21w by (Ot ua s 16 s,
2vs+ 11 )
(‘\/ 2T b 5“*""6"5"'15%""*‘)}'

We do not present the explicit form of £(z, v, {,{’), since one can show that the
quantum correction to the matrix element proportional to the Kronecker symbol
8|v1,v +2 does not effect the character of the radiation within the required acouracy in
#—0. The mean values of the operators X (2.2) and X: (2.3) in (3.1) with respect to
functions (1.9) have the form

Roy=x(t,{, 0, =" H | X | H,,
=x(1)8; r— WAL, H, [(Axti— #TAX) | H,, >+ O(F) (3.2

K>=#1, 0,8, B =, B X\ H,, C>=%x(t ¢ &% 1)

v+
{Cb’ kE_‘,t( 2Imb (iZE +9%|Bie|®

2V;¢+1
Im

g 1 Re| 2O )
e B2vit])

e 2Imbe Re{{zeVa,(1)zk x H(x, t)}‘ o 0)}5;,;'

eczi‘i

23"-

w[ iy BB, m]}
1+97!

{«,E» LI —qxﬁ“’?

— KL Hy | (AP G— G AP ) | H,, §) + O(). (3.3)
Here
JEG=JFif) + (A%, d2ad Y(e/ch3!)

G (H)6 o)y = LoD | Glx () *
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and the last summands in formulas (3.2) and (3.3) can be written in the following form:

_i\/ﬁ<gf’ Hvl [(RPP'@J)G__ E‘;+(A’PP91):’ I.Hv: ér)

Ax A

#2001 Zx (ﬂ,E(fD

=2 b {( )Ldf{ <"’[E” TN ]
v<B 2y . .

x[ﬂ 1+¢7! +z"]>

e < v <q( 748, H(x, HBHE D, g r))>

M

o= x(1)

h 5 vt
s ___J_M{Q)F,,w,,
ggkazllmbk:[mb {(Zk zj’ zj) (Zk z:? zJ)

+F(zj*s z.rf, ZJ)+F(zJ's zi?s z_}*)+F(zJ*?zf’ Z;)+F(zf’ z}k! zg)}}!
where’

3UF(gs, Zks Ton) =*‘% J dr {% <% V> {&x, V&, (E(x, 7) +5(7) X H(x, ©))>
0 N ’

—-f_:—, (<5, V) (2 X BCE, 1)), g+ Cims V3~ (X H Gz D]

82 Kﬂ G (Ces G+ 72CB, 2> B )

+(<7:j! £k>+yz<ﬂ! zJ> <ﬂs ik))(ﬁ: ém)]} » }-

We denote by 6'xx, Gpx in formula (3.1) the 3 x 3-matrices of coordinate dispersions
and coordinate and momentum correlations calculated with respect to quasi-classical
TCSs {1.3), respectively

cxf; [C()D.C*HB)+ CHDD,C O]+ O(F),

ap,% [B()D,CH (1) + B*(H)D,C(D] + O(ﬁf) (3.4)
p,=|2ts o=t ((AB+ B> — A (B,
Im b;c 3x3 2
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The spectral-angle distribution of energy and the radiation probabilities can be
obtained by common methods of quantum electrodynamics [1, 3]

d U—) - ez J‘“’ wzdm E (FTT5 _;_F‘u,a ) (3 5}
dQ  4r% o v[=0 FoE AT '

dw(m 62 = i N 1
@ do Fi'8mpt+FrS e pr
0 dr L tv;-u( 2O+ Fidp—p)

F1T=I dn J dtales, M () <{es, MT(t2))*

F;F=J‘ dn J dtz{el, MY (1) e, MH())*. (3.6)

Here the expansion in vectors €;, 1=1, 2:
ey =e,=(cos @ cos 8, sin ¢ cos 8, —sin §) 57
ey =es,=(sin ¢, —cos @, 0) ’

characterizes the polarization properties of radiation, and the matrix elements are given
in the form of a suin of parts with spin flip and without spin flip

M(t, L, L, By=(Sept8¢-oIML, £, O, Hy=8p oM™ + 5o M™

where &, is the Kronecker symbol.

Let us sum the square of a matrix element over the finite states of the electron
vy, V3, Vi, then we obtain

T Fl'= J. " r dty exp{im(:,—tz)—i§<nx(rl, ﬁ)>+i% nx(ts, ﬁ))}

[v'{=0

{ lex, %(tz, B> en, %(t1, H)>+ ﬁB”" +#BY Jr ﬁBfg’"} +00™ (3.8
where
B =2—13 [Im(<ex, C(t)DC* (12)end ) +iwles, ft2)> Im(<er, C(1)DoC* (22)0))

—iw{e,, (1)) Im({m, C(1)DoC*(t2)es))
+oXe, B} er, f(1z)) Im(<n, C(fx)DoC' T(t)n) )16,y

B = { T (=1, By (B, &) o5 7 Re((ﬂ C(t)D,C™(4)n))

k=1

b2 f

(—:zw) Z (—1)**"[<ea, B(2)> Re({n, CND.CT()e>)

—<ex, B(12)> Re({es, C(2)D,C* (22} )]

+% Re({es, C(1)D,C* (h)%))} 80
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<

()
5

e ﬁ(r:»[oz <8 exy L er, oy mx S ’fﬂ(m

izt (2) <e;.,ﬁ(t:)>[<ea, wxpy b <" ”>

_<eﬂ.s 3’)(}1>+<}’,n)<ﬁ> < L _.l](fz)

x(t, B)=x(4, %, &, §). (3.9)
For the spin flip, we obtain by similar calculations

J dr explilt—(o/c)nx()>1}

s

S o=

vi=o-

X {i— ez, ¥, ¢ —¢, ﬁ))"‘(—i-?)(ez, B <n, x(2, §, =5, )}

+1ﬁ—<ﬂ(t ¢ —0)

2
[nx e, —nxf < -I’—’yﬁ? €. % fl—-—1<'_:_’ ff,]>}

Thus, by taking into account the first quantum corrections, we can represent the
radiated energy (3.5) in the form of a functional on a classical trajectory (see
Introduction).

Let us consider briefly the characteristics of the quantum corrections in formnla
(3.8). The summand BY” describes the influence of spin on the radiation and is defined
only by the classical trajectory, ie. by the solutions of the Lorentz and Bargmann-
Michel-Telegdi equations. As is shown below, the summand B§ is also defined by the
classical trajectory, more exactly, by the solutions of the Lorentz equations only, mean-
while the summand BS” is related to the ‘quantum character of the trajectory’, namely,
to quantum fluctuations of the basic variables x and p. More exactly, B’ depends
explicitly on the parameters of the initial state of a quantum particle, i.e. on the param-
eters of the wavepacket ¥, (x, 2, #) (1.3) localized as A—0 in the neighbourhood of a
clagsical trajectory; on the number v which defines the wavepacket oscillations; and
on the real and imaginary parts of the complex parameters &;, j=1, 2, 3, which define,
by (3.4), the widih of the packet and the deviations of coordinates and momenta from
their equilibrium states.

As shown in section 4, this summand can be neglected in the ultra-relativistic case,
as can the “fluctuation’ part of the mean values x{(¢, £, &', #), %(¢, {, {’, #)} of the operator
coordinates and velocities in the exponent and the first summand in formula (3.8).

The expressions (3.8)~(3.10) give, in principle, for an arbitrary field, the solution
to the problem taking into account all the quantum corrections of the first order in
#i—0 uniformly with respect to the relativism, and they allow one to consider the process
of radiational self-polarization of electrons.

+ 00, (3.10)

Remark. The existence of two types of guantum corrections in the electron radiation
reflects the ‘two-scale’ character of quasi-classical asymptotics of wavefunctions {1.3)
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which were used in calculations of the radiational characteristics. When a classical
Hamiltonian system is quantized by the method of the cormplex germ [37, 38, 42], two
sma{] dimensionless parameters appear (formally proportional to % and /%, #—0). The
first of them, i.e. the ratio of the de Broglie wavelength to the characteristic dimensions
of the system, defines rapid oscillations (with frequency 1/#) of the wavefunction, the
second one characterizes the quantum fluctnations of a particle near a classical trajectory
with frequency =1/+/fi. It was shown in [45] that expression (3.5) summed over the
spin coincides with the corresponding expression for the spectral-angle distribution of
the local power of radiation of a spinless relativistic particle.

4. Ultra-relativistic approximation

Consider the energy radiated (3.5) and the probabilities of transition with spin flip (3.6)
in the ultra-relativistic approximation [4, 5], when the parameter y=(1~ %)%= 0.
We restrict consideration to the case when the radiation in a given direction is formed
by a part of the trajectory of length Al, Al~ O(y™") (for example, synchrotron radiation
[2, 5]). In this case, as is known, essentially high frequencies are radiated

@ = O(7°). 4.1
In the expression for spectral-angle distribution of the radiated energy (3.5) we introduce
the new variables

L=t+7/2 t=t—1/2 (4.2)

and the expression under the integral with respect to ¢ will be considered as a spectral-

angle distribution of the radiation power, d W2 /dQ, taking into account that the main

contribution to the integral is given by the domain of values small in 7 [5]
t=0,7") Ty (4.3)

By using estimates (4.1), (4.3) and expressions (1.18) we expand expressions (3.1), (3.3),
(3.8) into a series in ¥~ '—0. For the radiation power, after routine calculations [41]
we finally have
awsd & [
dQ 4z’ )|

o*do j dr {es, B(t1) > <es, p(12)>

. 252
g e f
X 1= Lnx g+~ |+ O(#). 4.4
g—he exPI:s—ﬁco T( wxp> 24 )] ) “4)
This expression coincides {with accuracy to O_(ﬁz)) with the expression for spectral-
angle distribution of the radiation power dW$¢/dQ from [5].
Now we calculate the probability of transition with spin flip. By using estimates
(4.1) and (4.3), we obtain

#(h2, G~ =n(t,§, —O)+ 0 (r™") e, H=0,(v"")

and
<e.?-s ﬂ(ﬂ) (.l’l, x(t': C: _C)> = 0‘)’(7’_2)
rxf=0,(y"") (, By=1+0,(+7%).
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Then (3.10) can be reduced to the form

w a0, o 2
Yy Ff= f dt f dr expl:icor (l —<Lnf> e ﬁz)}
{vl=0 -0 —c 24
o’
Ag*

X

(e, &, —0), eaxgqio{g(t. &, =), eax gy + Ox (7’3) (4.5)

where ¢= (1 —y~")”"'f—n. By using the relations

75 & =9, §, {)
e, q(t, §, =8)><b, n(t, §, —5)>=<a, by —{na>{yb) +ily, ax &)
=t ¢, &)

and summing them over the states of polarization with the help of the identity

2 .
E eﬁ'e’i=6jk"—nj'nk

i=1
“for the probability of transition with spin flip, we obtain

do 477 °

@ do L dr L de Zg% (s 51—, 15?)
+<n, [, 13 1, 42> —{n, @ <, 01— — {n, Hn)q1 X g3} (4.6)

g12=g(t£7/2).

Formula (4.6) (with accuracy O(#%)) coincides with formula (14.4) from [5].

5. Non-relativistic approximations
- Now we consider another limit case, when y—1, | #| -0, and hence, we can use the
formal expansion in powers of 1/¢ [1, 3]. Expand expressions (3.3)-(3.7) into a series

in ¢'—0 up to the highest-degree (in ¢~') term of the expansion (the dipole approxima-
tion). Then from (3.8) we obtain

§ FE:‘;IEJ d# J. dts exp{ico(t, - Zz)} {{e;_, .f(h, ﬁ)> {ey, f(zz, ﬁ)>
v|=0 —o -0

‘*g Ref{e;, C(4)D,CT(t)ex >} +i g Im[<e;, C(6:)DC* (t)exd]

+ O(F)+ 0(c™) (5.1)
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efi 2 2v,+1
iz, By =cf— &
W =b=3305 . TmbeImb,

X Im{ﬁk(t) J dr {REKZJ('E), V> {g'(2), VX Kz (), Elx, 7))

x-x(r)}

+2{zE(7), V) Rel[{zA1). V2 {3/ (v), E(x, 7)) ]}
+ O + 0.(c7?).

Similarly, for (3.10), we obtain

T Fi=

[v'|=0

j dt exp{iot} [—i j% (3, &, —5) nxe
o 2me

2
+

IR, e, alt, £, D)3+ 00 + oc(c*)]

2mc”

where a(z, {, —¢) denotes

3 !
a(t, &, —§J=kZl f drbk [4(e) - <ek (z), V> <y(z, ¢, —O)H(x, 7))
= 0

Im

— & (O<z(7), VD (2, £, =) H(x, 7))]

x = x{T)

(5.2)

(5.3)

To find the total radiation energy and the probability of radiation with spin flip in the
non-relativistic approximation we integrate expressions (5.1) and (5.2) over angles,

using the well known relations [3, 5]
1 4
—_ § dQ 2 (e;,, a) <e/1.s b)”':“ <(l, b>
2z i 3
- f; 40T (ex, @3 <B, &5 e, my=0
27 i
2
L {5 4T, Cez, 0 Cen, By m € {m, d
2n A=1
=1—25 (4<a, b><c, dy—<a, c>{b,d>—<a,d)<{h, c)).
This, (3.5), and the relation

JW do exp{iwé} =J’L’5(§)+P';'
0
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give the following expression for the total radiated energy

220 . . 7 z Hrot
fma=3 5 CE(t, ), #(t, A)) + 2 Re(Sp C(DD,C() | dt
# J‘°° J‘“’ 1 . . }
+— d#; di, Im(Sp C(#1)DoC™(22))
2z ) ., e LR
+O(F) +0(c™). ‘ - 54
Here ) '

2
2, )= ¢ =% £, )

and x(t, #) was defined in the dipole approximation in (5.1).
Similarly, using (3.6), we obtain the probability of radiation with spin flip

Whq= ezz sjm o de jw dsy Jm dt; exp{iw(t — 1)}
b6rmc J, e . _
x {w2<ﬂ(t1: g: _é’)ﬂ*(IZs C:, _§)> +<a(tl ’ gs _g)a*(@: ;: “c)>}
+ O + OLc™%). ‘ (5.5
or
wgd=—-ezﬁ—és f - o do {o*|)(o, L, —O*+ |al@, §, —0)} |} + 0 + 0Lc™®)
brmc ), .
- where

elw, £, —§)=JW dr exp{in_vr}a(t, £, —&)

2@, £, ~0)= f &t expliorhu(. £, ~£)

are the Fourier images of the functions a(#) and #(z).

6. Examples

Consider a number of examples illustrating the results obtained. We restrict ourselves
to expression (5.5) describing the spin effects of electron radiation using the non-
relativistic approximation, since in the non-relativistic approximation the expression
describing the total radiated energy of the electron (5.4) coincides with the similar result
for the spinless particle obtained in [45]. By formula (5.4) in [45] and by taking into
account the first quantum correction, the radiation power of a charged particle was
calculated in a constant and homogeneous magnetic field, in the field of a harmonic
oscillator and in [48] in an arbitrary focusing axially symmetric magnetic field. In
particular, it was shown in [45] that for an appropriate choice of the initial trajectory-
coherent state (namely, when this state is a correlated coberent state [14] or a coherent
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state [43, 44]) the expressions obtained for the power of spontaneous radiation in a
constani and homogencous magnetic field and the field of a harmonic oscillator coincide
with the corresponding results of [14, 15].

6.1. Probability of radiation with spin flip (with non-relativistic approximation) for an
electron moving in a constant and homogeneous magnetic field,

The equatton of spin motion (1.16) in a homogeneous magnetic field H= (0, 0, &) using
the non-relativistic approximation (£=mc>) is

__,’)(H
me

with the initial condition (1.16) for {'=—{ can be easily integrated

7)) =(C, €7+ Cy &7, i) 2 —iC 7™, Gy) 0=
me (6.1)
Ci=%3e™(cos 8+ () Co=1 e®(cos 0~ ) C,=sin 0.
By substituting (6.1) into (5.5), we obtain
2 [- - T
why= J 0, {, ~{) do
brmc J,

I(@, ¢, —§)=J. de, '[ d, exp{io(ti—t)}<a(t, §, —O7*(t2, £, =40 (6.2)

=87%| C\|20%(w + wo) +47%| C3|25%(w) + 877 | C2|*6% (0 — wo)-

By passing in a standard way to the probability of radiation with spin flip in unit time
Wk we obtain

&
W= hm why/T= —-§4nw%|C2]2.
Tm ¢

By using the explicit form of C;, we obtain

.1l ﬁeomo

ha=—25 (co -y C==+1 (6.3)

where € already defines the electron spin orientation along the direction of the vector
I=(cos psin 8, sin @sin 6, cos §). We multiply (6.3) by the photon energy #mg and
sum over the states of polarization of the initial spin of the electron ({==%1). As a
result, we obtain the total power of radiation of an electron with spin flip (in 2 homo-
geneous maguetic field)

17
pho= : nj“j" (1+cos® 6). (6.4)

For 8=0, this implies the result of [15].
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6.2. Probability of radiation with spin flip (in non-relativistic approximation) for
electron moving in an arbitrary focusing axially symmetric field :
Consider the electron moving in an electric field with potential

A(x, H=0 O(x, H=D(r) r=(x*+y3)'"? (6.5)

then the classical trajectory is defined by the Hamiltonian system
2

i=A, | pE—He  H(pR)=2+e00). (6.6)
The system (6.6) admits families of circles as solution
x(#) = R{cos o, sin wyf, 0) p=me(n)
(me a@(z»z))”2 : . (67
@Do=|— ——
R &R

and R is defined by the condition s#(p(#), x(?)) = E, where E is the energy of electron.
The equation of spin motion for a given trajectory of electron has the form.

e

()= —— #x (¥() X E(1)) . (6.8

2mc’ ]
where the electric field calculated on the trajectory (6.7) has the form
IB(R)
aR

System (6.8) with the initial condition (1.16) can be integrated for {'=—{ precisely as
in the previous example: )

7D =(C, e+ C, 67, iC, ¥ —i1C, &7, C3Y
where C;=%e&"({ —cos 8), Co=—1¢7%(¢ +cos §), C3=sin &, and the precession fre-
quency of spin of the electron is

Q=e_cog 6£IJ(R)_

me  dR

E(t)=—

(cos wyt, sin wgf, 0).

Precisely as in the previous example, we obtain for the probability of transifions with

spin flip in unit time

- A1 QY
6mc’

(£ +cos 8)%

The effect of radiational self-polarization for relativistic electron-positron bundles in
an axially symmetric electric field was considered in [46, 47].

7. Conclusions
By using quasi-classical trajectory-coherent states for the Dirac equation, we have con-

structed expressions for the characteristics of spontaneous radiation of an electron, with
the first quantum correction included as a certain (absolutely specific) functional of a
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classtcal trajectory of a particle. Therewith, we understand the classical electron trajec-
tory as a set of solutions of Lorentz and classical spin Bargmann-Michel-Telegdi
equations. ‘

The expression obtained for the first quantum correction holds for all energies of
an electron (for which the quantum corrections are less than the corresponding classical
term} and taken account of both the quantum loss of radiation and the fluctuational
terms characterizing the guantum character of a trajectory. The part of the quantum
correction which disappears in the ultra-relativistic approximation, and which from the
very beginning was neglected in the operator method [4, 5], can be obtained here in
explicit form. For non-relativistic particles this quantum correction is essential.

The dependence of the spin on the probability of radiation was obtained in the
general form. In the limiting case of ultra-relativistic electrons, the result naiurally
coincides with that given in [5]. In the non-relativistic case, a comparatively simple
general expression for the characteristics of spontanecus radiation of a charge was
obtained with the spin properties of this charge taken into account.

We note that for ultra-relativistic particles the advantage of the quasi-classical opera-
tor method [4, 5] is that this method does not require that the quantum corrections for
the loss of the photon be small; the use of quasi-classical trajectory-coherent states
assumes that these quantum corrections are small. However, in our method there are
no restrictions on the lowest particle energy limit. Thus the areas of application of these
methods possess interesting intervals of values of physical parameters for the problem
of spontaneous radiation of a charge.
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