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Ahstmct The lirst-order quantum correction for the characterization of spontaneous radia- 
tion i.4 calculated hy means of electron quasi-classical trajectory-coherent states in an arbi- 
trary electromagnetic field. Well know expressions for the characterization of spontaneous 
radiation are obtained using quasi-classical approximation. The first-order quantum wmo 
tiou is derived as a functional from a classical trajectory (among which is a classical spin 
vector). Transitions with spin Rip and without spin flip are distinguished. Those elements 
connected with photon Eck and quantum motion chara&stics are selected for ht-order 
quantum correction. It k shown that, USiDg an ultra-relativistic approximation, the latter 
may be ignored, but when using a non-relativistic appmximation their contributions are 
approximately equal. A special trajectory-coherent representation that significantly simpli- 
fies the investigation of spontaneous radiation is proposed. 

Introduction 

Quantum electrodynamics allows one, in principle, to obtain the general solution of 
the problem describing spontaneous radiation of electromagnetic waves by charged 
particles moving in external fields [l]. However, theoretical results in a simple and 
visual form can be obtained comparatively rarely 12-25], Thus the development of 
effective approximate methods of theoretical   ana lysis for the problem of spontaneous 
electromagnetic radiation is still an urgent problem. One of the most developed theories 
is the theory of synchrotron radiation [2-61, for radiation in nndulators [7-101, for 
radiation under axial channelling [9-121 and in systems with a quadratic Hamiltonian 
[13-151. 

The analysis carried, out in [4,5] showed that when ultra-relativistic particles are 
considered one can, as a rule, neglect the ‘quantum character’ of the particle trajectory 
and consider only the photon loss§. In particular, it was shown how the classical 
formulas for the cbaracteristics of spontaneous radiation of a~ pointwise charge could 
be obtained, including an exact classical expression for the Fourier transform of the 
Lie’nard-Wiechert potentials (see, for example, [5, p 1441). In this case the assumption 
that there exist quantum-mechanical states concentrated near the classical trajectory of 
a particle is essential. However, the explicit form of such states was not represented in 

S n i s  theoretical analysis was made more precise in [26,27]. There the natural questions concerning the’ 
initial conditions arise in the method accounting for the loss of the radiated photon. 
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151. A complete and orthonormalized set of such states, which are approximate (quasi- 
classical) solutions of the Klein-Gordon and Schrodinger equations, was constructed 
in [28-301, and for the Dirac equation such a set was constructed in 131-341; these 
states were called trajectory-coherent (TCS). 

By using these states, in [35] for a magnetic undulator and in [36] in the general 
case, the procedure for obtaining exact expressions for the Fourier transforms of the 
Lie’nard-Wiechert potentials (in the wavezone) from quantum theory has been per- 
formed. In [35,36] it was also shown (by using specific examples) how one can write 
the first quantum correction to the radiation power (or the energy radiated) of the 
spinless particle in the form of a specific functional of a classical trajectory of a particle. 

Here we show that the quasi-classical trajectory-coherent states [31,33] for the 
Dirac equation in an arbitrary external field allow one to obtain the fust quantum 
correction to the radiation of a charged spinor particle in the form of a certain speci6c 
functional of a classical trajectory. However, as a classical trajectory, we now consider 
not only the solution of the classical Lorentz equations, but also the solution of the 
classical spin equations. 

V G Bagrou et al 

1. Quasi-dassical trajectory-coherent states of an electron in an arbitrary 
electromagnetic field 

The construction of quasi-classical trajectory-coherent states (Tcs) of an electron in an 
arbitrary external field, which are asymptotic solutions of the Dirac equation with 
accuracy to any power of R as 2-0, was presented in detail in [31,33]. It turns out 
that for the purposes of o w  work, i.e. for obtaining the guaranteed first quantum 
corrections to the characteristics of spontaneous radiation, it is sufficient to use the 
electron TCS constructed to an accuracy O(Rs’z). We present the explicit form of the 
corresponding trajectory-coherent states of electron, following 1311. 

The motion of a relativistic charged particle will be.described by the Dirac equation 

[ - i l i a , + 2 1 ~ = 0  (1.1) 

9 = c& + p3m$ + eQ(x, t )  

where the Hamiltonian has the form 

(1.2) 

where @ = -ifiV-’(e/c)A(x, t ) ,  and A,  = (Q, -A)  is the electromagnetic potential (arbi- 
trary smooth functions in xcR3, tER’) and they increase together with their derivatives 
as 1x1 -00 not greater than a certain power of 1x1 uniformly in t d .  For Hermitian 
Duac matrices a = p &  C, p&= 1,2,3) we use the standard representation, and ae is 
a Euclidian scalar product 

3 
ac = <ae> = 1 a,ci. 

, = I  

The, main symbol of the Hamiltonian operator 9 (1.2) has the form H ( p ,  x, t )= 
ca9’+p3moc2+&(x, t ) ,  where P = p - ( e / c ) A ( x ,  t ) .  

The quasi-classical positive frequency TCS satisfying the Dirac equation (1.1) with 
accuracy to O(lis”) has the form 

Y&, t ,  f i ) = 2 : z ) ( R ) l H ” ,  c> (1.3) 
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where 

L*(p, x, t )  = e W ,  t )  f E(P, x, t )  
&(P, x, t )  =(Z(P. P)+m&4)'? 

The matrices TI,(t)=ili(p(t), x(t) ,  t )  are calculated? at the point r,(xo,po)= 
(x ( t ,  xo,po) ,p( t ,  xo,po)), where the functions x(t, xo,po),p(t, xo,p0) are solutions of 
the classical Hamiltonian systems 

P= - - u p ,  X, t )  

.t= u p ,  X, t )  x(O)=xo. 

€4) =Po 
(1.6) 

The operator *!"( f i )  is equal to 

&$O'(fi)(.)=N0(fi)[det C(t)]-'12 exp (1.7) 

Here 

is the normalization constant, the phase S(x, t) is a 'complex' action [37] of the form 

S(x, O = / '  [<*( t ) ,~ ( f ) ) -~ ( f ) l  dt+<p(t), W+A<Ax, B ( t ) . C - ' ( t ) W  
0 

where A x = x - x ( t ) ,  and 3 x~3-complex matrices 

B(O= t W l ( 0 ,  WZ(t),~W3(f)l C(O=[z1(t), Z2(f), z3(t)l 
are solutions of the system in variations (this is the linearization of the Hamiltonian 
system (1.6) in the,neighbourhood of the trajectory r,(xo,po), t d )  

t The dependence of values calculated at the points of a classical trajectoty on xo and po can be omitted 
below 

E(f) = &(f. a. PO), p( i ,  xor pol, 0. 

A(p, x, 1)=A'"(p, x, I ) .  

1 Here and below. the inden (+) in the classical Hamiltonian function will be omitted 
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B= -n,(t)B-a,(t)c 

C=A,(t)B+ &(t)C (1.8) 

C(0) = Il& II B(O) = Ilb$ij II Im b,>O (i, j= 1,2,3) 

The function I H, , C) has the form 

IH,, C>=Hv.u(t, 5) v=(v1 ,  v2, v3) 
(1.9) 3 

I= 1 
H,= n ( v j ! ) - ' / ' ( ~ ~ ) ' J .  1 , vj=O, 1, 2, 3, . . . 

where (A:, A:, A:) =A+ and (AI, &, &) = A  are the 'annihilation' and 'creation' 
operators 1381 

(1.10) 

&= -ihv - B(~)c- ' (~)Ax  

and the spinor u(t, C) satisfies the following equation 

cf l= i ( t )  y - l = J r - 8 i  

with initial conditions [39] 

(,J,Ou(O, C) = C@, n 6=+1 (1.11) 

which k e s  the particle spin direction along the unit.ve$or k R 3  for t=O;  here U= 

(cl, U;, 03) are the Pauli matrices. Then the operators and 7tj can be represented 
in the form? 

= & - 5 dl& 
C 

7 The operators a,, &, and & do not affect the first quantum correction to the power of spontaneous 
radiation, therefore we do got present them here explicitly (see [31]). 
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Here (ql 1%) denotes the scalar product in the Hilbert space Lk [32] 

(471 I%)=JR,d3xp& Od-% p&, t) =(*)(fi))+2p(fi). (1.12) 

Note that the 'operators Axj, Kpj, 61, $1, and $2 are self-adjoint in Lk, and the 
functions (1.9) form in LI, a complete orthonormalized set of states 

<i',H+ IHv,C>=b&,c.  (1.13) 

There are no difficulties in calculating the matrix element in an arbitrary operator d; 
with piecision O(fi"+"/2) with respect to the quasi-classical Tc-states. For this purpose 
i t  is necessary to obtain the operator in the quasi-classical Tc-representation up to 
O(fi(N+')n) [31] ind average the expression obtained with respect to the wavefunction 
IH,, e )  (function 1.9) taking into account (1.13) and 

(1.14) 

(1.15) 

Here q(t, c, e) is the solution of the Bargmann-Michel-Telegdi equation for g=2 [40] 

(1.16) 

with the initial condition 

where k =  (0,O. I), and I was defined in (1.11). 

'and Api in terms of the operators of 'creation' AT and 'annihilation' Aj (1.10) [41] 

* 

In-order to use (1.13)-(1.15), we present the-relations expressing the operators Ax, 

Sincetheinversematrix T.T-'=T-' .T=T6x6,  by(1.10)and(l.l7)itiseasytoobtain 
the following matrix relations which will be used below 

B*D~C'.- BD&+ = -2iz3x3 

C"D,C~- C D ~ C + =  B*D,B'- BD,,B+=o. 
(1.18) 

 relations (1.13)-(1.15), (1.17) and the explicit form of the operator &N)(fi) defining 
the transition to the quasi-classical rc-representation Up to mod O(R(NC'1/2) allow us 
to calculate, in principle, the matrix elements of an arbitrary operator & ~ ( t )  with 
precision O(f i (N+l ) /Z)  if its symbol d ( p ,  x, t )  is a smooth function inp, x and t ,  together 
with all its derivatives. 
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2. Transitinn current operator in quasi-classical trajectory-coherent representation 

The operator &"(?i) (1.4) dehes mod 0 ( f i 3 j 2 )  the transition to the quasi-classical TC- 
representation 

V G Bagrov et a1 

a,= (2y)(fi))-lY + U(fi3)Z) 

a+ = ( ~ ~ Z ) ( f i ) ) - 1 ~ * ~ ~ 2 ) ( f i )  + 6 ( f i 3 ' 2 ) .  

We calculate the current operator in this representation 

j+  = u exp{io (t -; (n, x))} 

n= (n, , n2, n3) =(cos a, sin 8, sin a, sin. 8, cos e). 

By (1.4), we obtain 

j+ = (.9Z2)(fi))-'u exp * ' ( t i )  + 6(fi312) 

=(l+ifi7tl.:+ifii?:-fi(ii.:)2) 1-- -Q; exp iw t - - ( n , x )  XiE - 118 i ( f 11 

x (1 +ifii?, - fi(i7t2iii.:)) + 6 ( ~ ) .  (2.1) 

We denote by @fin)  the operator j :  L64L6 for which IJF$$IL~= O(fi"), as fi+O, 9~ 
Lli. Since the measure (1.12) depends on a small parameter, in all subsequent calcula- 
tions one can approximate the smooth functions a,(r, t) by the partial sums of the 
Taylor series in powers of Ax= 0($) with the given accuracy in A-0. 

By using this fact, we can obtain the following expressions for the coordinate and 
velocity operators in Tc-representation 

2+ = ( 2 : y f i ) ) - l x 2 : y f i )  
= x ( t )  + A x -  iJii'(Axk, - Q A x )  + 6(fi312) (2.2) 
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(2.3) 1 + y-l 

By substituting these exp_ressions into (2.1) for the transition current operator in the 
Tc-representation (mod O(fi3/')), we obtain 

(a, 1 XS) - a X P -  1 + y-1 
B +- aXn-- 

2E [ + y-l 

(2.4) 

3. Spectral-angle distribution of energy of s p o n ~ e o u s  radiation 
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Here 

V G Bagrov et a1 

We do not present the explicit form of 9 ( t ,  v, c, r), since one can show that the 
quantum correction to the matrix element proportional to the Kronecker symbol 
6,v, , ,9 ,  does not effect the character of the radiation,Wthin the required accuracy in 
fi-0. The mean values of the operators X+ (2.2) and X+ (2.3) in (3.1) with respect to 
functions (1.9) have the form 

Here 
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and the last summands in formulas (3.2) and (3.3) can be written in the following form: - 

- i 9 < r , H v l [ (  aP@5 dr ) g-6+  ( ~ p p ~ l  -)]IX,,O 
Ax 

=!! 2 & = I  '~m{($ Imbk J o f d . ~ ( ~ , [ ~ ( = ~ - p @ ~ E " ' ) ]  1 + Y-1 

+ ( ( i j , i d + Y 2 @ ,  iJ@, tk))*,im)l}l 
r-r(r) 

We denote by 6,, o,, in formula (3.1) the 3 x 3-matrices of coordinate dispersions 
and coordinate and momentum correlations calculated with respect to quasi-classical 
TCS (1.3), respectively 

f 
4 
ti 
4 

ox,=- [C(t)D,C*(t)+b(t)D,C'( t ) ]+0(f2) ,  

(3.4) ops=- [B(t)D,C'(t) +B*(t)D,C'(t)]+ 0(P) 
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The spectral-angle distribution of energy and the radiation probabilities can be 
obtained by common methods of quantum electrodynamics [l, 31 
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x(t ,  f i )=x( t ,  fi, 6, 0. 
For the spin flip, we obtain by similar calculations 

(3.9) 

(3.10) 

~ Thus, by taking into account the first quantum corrections, we can represent the 
radiated energy (3.5) in the form of a functional on a classical trajectory (see 
Introduction). 

Let us consider briefly the characteristics of the quantum corrections in formula 
(3.8). The summand describes the influence of spin on the radiation and is defined 
only by the classical trajectory, i.e. by the solutions of the Lorentz and Bargmann- 
Michel-Telegdi equations. As is shown below, the summand B&? is also defined by the 
classical trajectory, more exactly, by the solutions of the hren tz  equations only, mean- 
while the snmmaud L@ is related to the 'quantum character of the trajectory', namely, 
to quantum fluctuations of the basic variables x and j, More exactly, Bk? depends 
explicitly on the parameters of the initial state of a quantum particle, i.e. on the param- 
eters of the wavepacket Y&, t, f i )  (1.3) localized as 840 in the neighbourhood of a 
classical trajectory; on the number v which defines the wavepacket oscillations; and 
on the real and imaginary parts of the complex parameters b,, j= 1,2,3, which define, 
by (3.4), the width of the packet and the deviations of coordinates and momenta from 
their equilibrium states. 

As shown in section 4, this summand can be neglected in the ultra-relativistic case, 
as can the 'fluctuation' part of the mean values x(t, (, c, f i ) ,  x(t ,  <, c, fi).of the operator 
coordinates and velocities in the exponent and the first summand in forhula (3.8). 

The expressions (3.8)-(3.10) give, in principle, for an arbitrary field, the solution 
to the problem taking into account all the quantum corrections of the first order in 
fi-0 uniformly with respect to the relativism, and they allow one to consider the process 
of radiational self-polarization of electrons. 

Remark. The existence of two types of quantum corrections in the electron radiation 
reflects the 'two-scale' character of quasi-classical asymptotics of wavefunctions (1.3) 

~ 
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which were used in calculations of the radiational characteristics. When a classical 
Hamiltonian system is quantized by the method of the complex germ [37,38,42], two 
small dimensionless parameters appear (formally proportional to 6 and fi, 6-0). The 
first of them, i.e. the ratio of the de Broglie wavelength to the characteristic dimensions 
of the system, defines rapid oscillations (with frequency l/fi) of the wavefunction, the 
second one characterizes the quantum fluctuations of aparticle near a classical trajectory 
with frequency el/$. It was shown in 1451 that expression (3.5) summed over the 
spin coincides with the corresponding expression for the spectral-angle distribution of 
the local power of radiation of a spinless relativistic particle. 

V G Bugrov et a1 

4. Ultra-relativistic approximation 

Consider the energy radiated (3.5) and the probabilities of transition with spin tlip (3.6) 
in the ultra-relativistic approximation [4,5], when the parameter y= (1 -/?2)-1'2+m. 
We restrict consideration to the case when the radiation in a given direction is formed 
by a part of the trajectory of length Al, A l e  O(y-') (for example, synchrotron radiation 
[2,5]). In this case, as is known, essentially high frequencies are radiated 

0 = O(y3). (4.1) 

tI = t +  T/2 t 2 = t -  r/2 (4.2) 

In the expression for spectral-angle distribution of the radiated energy (3.5) we introduce 
the new variables 

and the expression under the integral with respect to t will be considered as a spectral- 
angle distribution of the radiation power, dWA?/dCZ, taking into account that the main 
contribution to the integral is given by the domain of values small in z [5] 

r = O,(y-') y-00. (4.3) 
Byusingestimates (4.1), (4.3) andexpressions (1.18) we expandexpressions (3.1), (3.3), 
(3.8) into a series in y-'-.O. For the radiation power, after routine calculations [41] 
we finally have 

(4.4) 

This expression coincides (with accuracy to O(R2)) with the expression for spectral- 
angle distribution of the radiation power dWs)/dCZ from [5]. 

Now we calculate the probability of transition with spin flip. By using estimates 
(4.1) and (4.3), we obtain 

&1,2, c> -6) =tl(t,  c, -0 + O,(y-') 

<eA,B(t)><n,x(t, C, -<)>=O,(Y-~) 

n ~ / ? = O ~ ( y - ~ )  

<ex3 8) = O,(y-') 

and 

(n, /?) = 1 + O W ) .  
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Then (3.10) can be reduced to the form 

6443 

where q =  (1 - y-l)-lfl-n. By using the relations 

q*(& 5 3  r ' )=dt ,  r: 5) 
(a. rl(t, L -5)>(h dt ,  C, -43>=<a, b)-<tla)(rlb)+i(rl, a x @  

11= c, 5) 

and summing them over the states of polarization with the help of the identity 

2 C di*k;=6,k-nj*nk 
i= I 

for the probability of transition with spin flip, we obtain 

5. Non-relativistic approximations 

Now we consider another limit case, when y-I, I flI +O, and hence, we can use the 
formal expansion in powers of I/c [ l ,  31. Expand expressions (3.3)-(3.7) into a series 
in c-l-0 up to the highest-degree (in c-l) term of the expansion (the dipole approxima- 
tion). Then from (3.8) we obtain 

(5.1) 
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2 V J + l  
i ( t ,  ii)=cP-- i 

2(3!)2 xJ-I Im b* Im bJ 

where a(t, (, -<) denotes 

-ik*(t)<zx(r), V><V(T, (3 -C)H(x, a l l  . (5.3) 
*=r(?) 

To find the total radiation energy and the probability of radiation with spin flip in the 
non-relativistic approximation we integrate expressions (5.1) and (5.2) over angles, 
using the well known relations [3,5] 

This, (3.5), and the relation 
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give the following expression for the total radiated energy 

1 E&=: <is_", [(x(t, l i ) , f ( t ,  li))+-Re(Sp li C(t)DvC"(f))  dt 
3 c  2 

+ o(li2) + 0,(~-7). 
Here 

dz d 
x ( t , l i ) = - ( x ) = - f ( t ,  li) 

d? dt 

and k(t, li) was dehed in the dipole approximation in (5.1). 
Similarly, using (3.6), we obtain the probability of radiation with spin flip 

(5.4) 

are the Fourier images of the functions a(t)  and q(t). 

6. Examples 

 consider^ a number of examples illustrating the results obtained. We restrict ourselves 
to expression (5.5) describing the spin effects of electron radiation using the non- 
relativistic approximation, since in the non-relativistic approximation the expression 
describing the total radiated energy of the electron (5.4) coincides with the similar result 
for the spinless particle obtained'in [45]. By formula (5.4) in [45] and by taking into 
account the l int quantum correction, the radiation power of a charged particle was 
calculated in a constant and homogeneous magnetic field, in the field of a harmonic 
oscillator and in [48] in an arbitrary focusing axially symmetric magnetic field. In 
particular, it was shown in [45] that for an appropriate choice of the initial trajectory- 
coherent state (namely, when this state is a correlated coherent state [ 141 or a coherent 
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state [43,44]) the expressions obtained for the power of spontaneous radiation in a 
constant and homogeneous magnetic field and the field of a harmonic oscillator coincide 
with the corresponding results of [14, 151. 

V G Bagrov et a1 

6.1. Probability of radiation with spinflip (with non-relativistic approximation) for an 
electron moving in a constant and homogeneous magnetic jeld. 

Theequation of spinmotion (1.16) in a homogeneousmagneticfield H =  (0, 0, H) using 
the non-relativistic approximation (&=me2) is 

with the initial condition (1.16) for c=-C can be easily integrated 

eH 
WO=- 

me 
q(t) = (Cl e"0"+C2 e-imoz, iCI eiluar- ic, e-irv0', c ~ ) ~  

,cl =: e-"(cos e + 0 c-1 2-ze iP (cos 0 - 0  c3=sin e. 
By substituting (6.1) into (5.5), we obtain 

By using the explicit form of C2, we obtain 

where 9 already defines the electron spin orientation along the direction of the vector 
I =  (cos 9 sin 8, sin 9 sin 9, cos e). We multiply (6.3) by the photon energy goo and 
sum over the states of polarization of the initial spin of the electron (C=+l). As a 
result, we obtain the total power of radiation of an electron with spin flip (in a homo- 
geneous magnetic field) 

For 0 =0, this implies the result of [15]. 
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6.2. Probability of radiation with spin flip (in non-relativistic approximation) for 
electron moving in an arbitrary focusing axially symmetricfeld 

Consider the electron movingin an electric field with potential 

A(x ,  t)=O @(x, t )=@(r )  r=(x2+y2)1’2 (6.5) 
then the classical trajectory is defined by the Hamiltonian system 

x=3Ecp p = - s x  S ( p ,  x)=-+e@(r) .  (6.6) 
P2 
2m 

The system (6.6) admits families of circles as solution 

x(t)  = R(cos mot, sin mot, 0 )  P(t)  = W t )  

and R is defined by the condition S”(p( t ) ,  r ( t ) )  =E, where E is the energy of electron. 
The equation of spin motion for a given trajectory of electron has the form 

e 
2mc io) = -~2 11 x (.i(t) x E(t))  (6.8) 

where the electric field calculated on the trajectory (6.7) has the form 

(cos mot, sin mot, 0). m(R) E(t) = - - 
aR 

System (6.8) with the initial condition (1.16) can be integrated for c=-c precisely as 
in the previous example: 

d t )  = (CI e C3Y 
ML + c2 e-im, ic, eint - ic, e-iRI, 

where CI=iei9((r-cos e), C2=-fe-”(c+cos e), G=sin 0, and the precession fre- 
quency of spin of the electron is 

Precisely as in the previous example, we obtain for the probability of transitions with 
spin flip in unit time 

The effect of radiational~ self-polarization for relativistic electron-positron bundles in 
an axially symmetric electric field was considered in [46,47]. 

I. Conclusions 

By using quasi-classical trajectory-coherent states for the Dirac equation, we have con- 
structed expressions for the characteristics of spontaneous radiation of an electron, with 
the first quantum correction included as a certain (absolutely specific) functional of a 
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classical trajectory of a particle. Therewith, we understand the classical electron trajec- 
tory as a set of solutions of Lorentz and classical spin Bargmann-Michel-Telegdi 
equations. 

The expression obtained for the first quantum correction holds for all energies of 
an electron (for which the quantum corrections are less than the corresponding classical 
term) and taken account of both the quantum loss of radiation and the ikctuational 
terms characterizing the quantum character of a trajectory. The part of the quantum 
correction which disappears in the ultra-relativistic approximation, and which from the 
very beginning was neglected in the operator method [4,5], can be obtained here in 
explicit form. For non-relativistic particles this quantum correction is essential. 

The dependence of the spin on the probability of radiation was obtained in the 
general form. In the limiting case of ultra-relativistic electrons, the result naiurally 
coincides with that given in [5]. In the non-relativistic case, a comparatively simple 
general expression for the characteristics of spontaneolls radiation of a charge was 
obtained with the spin properties of this charge taken into account. 

We note that for ultra-relativistic particles the advantage of the quasi-classical opera- 
tor method [4,5] is that this method does not require that the quantum corrections for 
the loss of the photon be small; the use of quasi-classical trajectory-coherent states 
assumes that these quantum corrections are small. However, in our method there are 
no restrictions on the lowest particle energy limit. Thus the areas of application of these 
methods possess interesting intervals of values of physical parameters for the problem 
of spontaneous radiation of a charge. 
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